Метод флюоресцентной ангиографии
С 1961 г. после работ Novotny и Alvis (1961), показавших возможность серийного фотографирования контрастированных флюоресцеином сосудов глазного дна, метод исследования, получивший название флюоресцентной ангиографии глазного дна (ФАГД), приобрёл особое значение в вопросах диагностики и патогенеза различных поражений сетчатки и хориоидеи. ФАГД преодолела ранее недосягаемый барьер и позволила изучать микроциркуляцию глаза in vivo. Флюоресцеин, введённый внутривенно, контрастирует сосуды переднего отдела глаза, хориоидеи и сетчатки, что можно зарегистрировать фотографически. Флюоресценция сосудов на позитивных фотографиях определяется в виде белых полос на фоне глазного дна, на негативных снимках соотношения обратные.
Для флюоресцентного исследования применяют различные модели фотографических камер: «Ретинофот-211», фундус-камеры фирмы «Орtоn» РР-4 и РК-50 (Германия), японские камеры фирм «Саnon» и «Торсоn», полуавтоматическую ручную фундус-камеру «Коwа КС-2» (Япония). Фотощелевые лампы SL-ЗО и SL-75 снабжены аппаратурой для флюоресцентной ангиографии переднего отрезка глаза. В отечественной практике наиболее популярным прибором является автоматическая фундус-камера фирмы «Орtоn». Этот прибор обладает весьма коротким циклом (перезарядка конденсатора вспышки между экспозициями) и вспышкой большой интенсивности, что позволяет использовать плёнку средней чувствительности. В этой камере применена специальная система автоматической подачи плёнки, приводимая в действие двигателем с встроенным в него электромагнитом. Фотографирование производится нажатием на педаль, так что исследователь всё своё внимание может сосредоточить на объекте исследования. Камера готова к повторной съёмке через 0,5 с, что обеспечивает достаточно высокую скорость серийного фотографирования. Синхронно со съёмкой осуществляется отсчёт временных интервалов, они проецируются на плёнку в ходе ангиографии.
При флюоресцентной ангиографии любой камерой удовлетворительные результаты получаются лишь тогда, когда оптимально сбалансированы светоизлучение вспышки, проницаемость возбуждающего фильтра, спектр активации и флюоресценции красителя, отражательная способность сетчатки, спектр пропускания барьерного фильтра, светочувствитеьность плёнки.
Флюоресцеин — слабая двухосновная кислота из группы ксантенов, используется в виде натриевой соли, хорошо растворимой в воде. Обладает очень высокой эмиссионной способностью, 95% поглощённого синего света (максимум абсорбции 480-500 нм) трансформируется в свет флюоресценции (максимум эмиссионной кривой соответствует 525-530 нм). При введении в кровь 80-85% флюоресцеина связывается с альбуминами плазмы. Однако эти связи слабые и лабильные, значительно зависят от температуры и рН крови. Благодаря небольшим размерам молекулы и низкой молекулярной массе флюоресцеин легко проникает через большинство биологических мембран путём диффузии. Окрашивание кожи и слизистых оболочек достигает максимума через 10 мин после введения, освобождение тканей от флюоресцеина происходит в течение 24-48 ч.
Распределение флюоресцеина в тканях глаза изучал ряд исследователей (Ashton, Machemer, 1965; Cunha-Vaz, 1966) с использованием ангиографических и гистологических методов. Выявлено, что структуры, образующие гематоофтальмический барьер, в норме не пропускают флюоресцеин. К ним относятся сосуды сетчатки, имеющие плотный слой эндотелиальных клеток, связанных между собой особо прочными межклеточными соединениями и слой пигментного эпителия, где практически отсутствуют интерцеллюлярные пространства. В то же время флюоресцеин свободно проникает через фенестрированную стенку хориокапилляров и накапливается в экстравазальных пространствах хориоидеи, окрашивает мембрану Бруха (базальная пластинка сосудистой оболочки глаза) и склеру. Слой пигментного эпителия задерживает переднюю диффузию флюоресцеина из хориокапиллярного слоя. Функционирующие в норме барьеры для проникновения флюоресцеина в сетчатку разрушаются при патологических состояниях, что имеет принципиальное значение для интерпретации флюоресцентных ангиограмм (табл. 1-1).
Таблица 1-1 Проницаемость структур глаза для флюоресцеина
Структура | Проницаемость | Локализация барьера |
Артериолы и капилляры сетчатки | Нет | Эндотелиальные клетки и соединяющие их комп-лексы |
Большие хориоидальные сосуды | Нет | Эндотелиальные клетки |
Хориокапилляры | Да | |
Мембрана Бруха | Да | |
Пигментный эпителий | Нет | Клетки пигментного эпи-телия и соединяющие их комплексы |
Сосуды радужной оболочки | Нет | |
Цилиарный эпителий | Да |